资源类型

期刊论文 44

年份

2023 8

2022 2

2021 5

2020 1

2019 4

2018 3

2017 7

2016 1

2015 1

2014 1

2013 3

2011 2

2008 2

2003 1

2001 1

展开 ︾

关键词

低温铝电解 2

固体氧化物燃料电池 2

SiC绝缘侧壁 1

双层辉光离子渗金属技术 1

反应模型 1

大型电解槽 1

惰性阳极 1

惰性阳极和惰性阴极 1

惰性阴极 1

扩散 1

支撑体 1

电性能 1

空心阴极效应 1

管式 1

质子导体 1

铝电解工业 1

阴极 1

阴极材料 1

阴极溅射 1

展开 ︾

检索范围:

排序: 展示方式:

Recent advances in cathode electrocatalysts for PEM fuel cells

Junliang ZHANG

《能源前沿(英文)》 2011年 第5卷 第2期   页码 137-148 doi: 10.1007/s11708-011-0153-y

摘要: Great progress has been made in the past two decades in the development of the electrocatalysts for proton exchange membrane fuel cells (PEMFCs). This review article is focused on recent advances made in the kinetic-activity improvement on platinum- (Pt-) based cathode electrocatalysts for the oxygen reduction reaction (ORR). The origin of the limited ORR activity of Pt catalysts is discussed, followed by a review on the development of Pt alloy catalysts, Pt monolayer catalysts, and shape- and facet-controlled Pt-alloy nanocrystal catalysts. Mechanistic understanding is reviewed as well on the factors contributing to the enhanced ORR activity of these catalysts. Finally, future directions for PEMFC catalyst research are proposed.

关键词: proton exchange membrane fuel cells (PEMFCs)     cathode electrocatalysts     platinum     oxygen reduction reaction (ORR)    

Ionic liquid modified Pt/C electrocatalysts for cathode application in proton exchange membrane fuel

Huixin Zhang, Jinying Liang, Bangwang Xia, Yang Li, Shangfeng Du

《化学科学与工程前沿(英文)》 2019年 第13卷 第4期   页码 695-701 doi: 10.1007/s11705-019-1838-8

摘要: The modification of Pt/C catalyst by using ionic liquids to improve their catalyst activities has been reported by many researchers, but their practical behavior in operating fuel cells is still unknown. In this work, we study the ionic liquid modified Pt/C nanoparticle catalysts within cathodes for proton exchange membrane fuel cells. The influence of the ionic liquid amount, adsorption times and dispersing solvents are investigated. The experiment results show the best performance enhancement is achieved through two-time surface modification with 2 wt-% ionic liquid solution. The mechanisms are explored with the attribution to the high oxygen solubility in the ionic liquid enabling an improved oxygen diffusion in micropores and to good hydrophobicity facilitating water expelling from the active sites in fuel cell operation.

关键词: ionic liquid     PEMFC     electrode     oxygen reduction reaction     electrocatalyst     adsorption    

An overview and recent advances in electrocatalysts for direct seawater splitting

《化学科学与工程前沿(英文)》 2021年 第15卷 第6期   页码 1408-1426 doi: 10.1007/s11705-021-2102-6

摘要: In comparison to pure water, seawater is widely accepted as an unlimited resource. The direct seawater splitting is economical and eco-friendly, but the key challenges in seawater, especially the chlorine-related competing reactions at the anode, seriously hamper its practical application. The development of earth-abundant electrocatalysts toward direct seawater splitting has emerged as a promising strategy. Highly efficient electrocatalysts with improved selectivity and stability are of significance in preventing the interference of side reactions and resisting various impurities. This review first discusses the macroscopic understanding of direct seawater electrolysis and then focuses on the strategies for rational design of electrocatalysts toward direct seawater splitting. The perspectives of improved electrocatalysts to solve emerging challenges and further development of direct seawater splitting are also provided.

关键词: seawater splitting     electrocatalysts     oxygen evolution reaction     hydrogen evolution reaction     chlorine chemistry    

Mapping the trends and prospects of battery cathode materials based on patent landscape

《能源前沿(英文)》   页码 822-832 doi: 10.1007/s11708-023-0900-x

摘要: Advancing portable electronics and electric vehicles is heavily dependent on the cutting-edge lithium-ion (Li-ion) battery technology, which is closely linked to the properties of cathode materials. Identifying trends and prospects of cathode materials based on patent analysis is considered a kernel to optimize and refine battery related markets. In this paper, a patent analysis is performed on 6 popular cathode materials by comprehensively considering performance comparison, development trend, annual installed capacity, technology life cycle, and distribution among regions and patent assignees. In the technology life cycle, the cathode materials majorly used in electric vehicle have entered maturity stage, while the lithium cobalt oxide (LCO) cathode that is widely used in portable electronics is still in the growth stage. In global patent distributions, China holds more than 50% of total patents. In the top 10 patent assignees of 6 cathode materials, 2 institutes are from China with the rest being Japan (6) and Republic of Korea (2), indicating that the technology of cathode materials in China is relatively scattered while cathode research is highly concentrated in Japan and Republic of Korea. Moreover, the patent distribution has to consider practical issues as well as the impacts of core patents. For example, the high cost discourages the intention of applying international patents. This paper is expected to stimulate battery research, understand technical layout of various countries, and probably forecast innovative technology breakthroughs.

关键词: patent analysis     cathode     batteries     technology life cycle    

Fabrication of layered structure VS anchor in 3D graphene aerogels as a new cathode material for lithium

《能源前沿(英文)》 2019年 第13卷 第3期   页码 597-602 doi: doi:10.1007/s11708-018-0576-9

摘要: VS4 has gained more and more attention for its high theoretical capacity (449 mAh/g with 3e transfer) in lithium ion batteries (LIBs). Herein, a layered structure VS4 anchored in graphene aerogels is prepared and first reported as cathode material for LIBs. VS4@GAs composite exhibits an exceptional high initial reversible capacity (511 mAh/g), an excellent high-rate capability (191 mAh/g at the 5 C), and an excellent cyclic stability (239 mAh/g after 15 cycles).

关键词: VS4     graphene aerogels     cathode     lithium storage    

A review of Pt-based electrocatalysts for oxygen reduction reaction

Changlin ZHANG, Xiaochen SHEN, Yanbo PAN, Zhenmeng PENG

《能源前沿(英文)》 2017年 第11卷 第3期   页码 268-285 doi: 10.1007/s11708-017-0466-6

摘要: Development of active and durable electrocatalyst for oxygen reduction reaction (ORR) remains one challenge for the polymer electrolyte membrane fuel cell (PEMFC) technology. Pt-based nanomaterials show the greatest promise as electrocatalyst for this reaction among all current catalytic structures. This review focuses on Pt-based ORR catalyst material development and covers the past achievements, current research status and perspectives in this research field. In particular, several important categories of Pt-based catalytic structures and the research advances are summarized. Key factors affecting the catalyst activity and durability are discussed. An outlook of future research direction of ORR catalyst research is provided.

关键词: oxygen reduction reaction (ORR)     electrocatalysis     platinum catalyst     activity     durability    

Structural engineering of transition metal-based nanostructured electrocatalysts for efficient water

Yueqing Wang, Jintao Zhang

《化学科学与工程前沿(英文)》 2018年 第12卷 第4期   页码 838-854 doi: 10.1007/s11705-018-1746-3

摘要: Water splitting is a highly promising approach for the generation of sustainable, clean hydrogen energy. Tremendous efforts have been devoted to exploring highly efficient and abundant metal oxide electrocatalysts for oxygen evolution and hydrogen evolution reactions to lower the energy consumption in water splitting. In this review, we summarize the recent advances on the development of metal oxide electrocatalysts with special emphasis on the structural engineering of nanostructures from particle size, composition, crystalline facet, hybrid structure as well as the conductive supports. The special strategies relay on the transformation from the metal organic framework and ion exchange reactions for the preparation of novel metal oxide nanostructures with boosting the catalytic activities are also discussed. The fascinating methods would pave the way for rational design of advanced electrocatalysts for efficient water splitting.

关键词: water splitting     structure engineering     metal organic framework     ion exchange     synergistic effect     hybrid structure     conductive supports    

Facile route to achieve MoSe-NiSe on nickel foam as efficient dual functional electrocatalysts for overall

《能源前沿(英文)》 2022年 第16卷 第3期   页码 483-491 doi: 10.1007/s11708-022-0813-0

摘要: Since the catalytic activity of present nickel-based synthetic selenide is still to be improved, MoSe2-Ni3Se2 was synthesized on nickel foam (NF) (MoSe2-Ni3Se2/NF) by introducing a molybdenum source. After the molybdenum source was introduced, the surface of the catalyst changed from a single-phase structure to a multi-phase structure. The catalyst surface with enriched active sites and the synergistic effect of MoSe2 and Ni3Se2 together enhance the hydrogen evolution reactions (HER), the oxygen evolution reactions (OER), and electrocatalytic total water splitting activity of the catalyst. The overpotential of the MoSe2-Ni3Se2/NF electrocatalyst is only 259 mV and 395 mV at a current density of 100 mA/cm2 for HER and OER, respectively. MoSe2-Ni3Se2/NF with a two-electrode system attains a current density of 10 mA/cm2 at 1.60 V. In addition, the overpotential of HER and OER of MoSe2-Ni3Se2/NF within 80000 s and the decomposition voltage of electrocatalytic total water decomposition hardly changed, showing an extremely strong stability. The improvement of MoSe2-Ni3Se2/NF catalytic activity is attributed to the establishment of the multi-phase structure and the optimized inoculation of the multi-component and multi-interface.

关键词: three-dimensional molybdenum nanomaterials     hydrogen evolution reaction     oxygen evolution reaction     overall water splitting    

Oxygen-deficient MoO/NiS heterostructure grown on nickel foam as efficient and durable self-supported electrocatalysts

《化学科学与工程前沿(英文)》 2023年 第17卷 第4期   页码 437-448 doi: 10.1007/s11705-022-2228-1

摘要: High-performance and ultra-durable electrocatalysts are vital for hydrogen evolution reaction (HER) during water splitting. Herein, by one-pot solvothermal method, MoOx/Ni3S2 spheres comprising Ni3S2 nanoparticles inside and oxygen-deficient amorphous MoOx outside in situ grow on Ni foam (NF), to assembly the heterostructure composites of MoOx/Ni3S2/NF. By adjusting volume ratio of the solvents of ethanol to water, the optimized MoOx/Ni3S2/NF-11 exhibits the best HER performance, requiring an extremely low overpotential of 76 mV to achieve the current density of 10 mA∙cm‒2 (η10 = 76 mV) and an ultra-small Tafel slope of 46 mV∙dec‒1 in 0.5 mol∙L‒1 H2SO4. More importantly, the catalyst shows prominent high catalytic stability for HER (> 100 h). The acid-resistant MoOx wraps the inside Ni3S2/NF to ensure the high stability of the catalyst under acidic conditions. Density functional theory calculations confirm that the existing oxygen vacancy and MoOx/Ni3S2 heterostructure are both beneficial to the reduced Gibbs free energy of hydrogen adsorption (|∆GH*|) over Mo sites, which act as main active sites. The heterostructure effectively decreases the formation energy of O vacancy, leading to surface reconstruction of the catalyst, further improving HER performance. The MoOx/Ni3S2/NF is promising to serve as a highly effective and durable electrocatalyst toward HER.

关键词: molybdenum oxides     oxygen vacancies     heterostructure     electrocatalysts     hydrogen evolution reaction    

Current challenge and perspective of PGM-free cathode catalysts for PEM fuel cells

Gang WU

《能源前沿(英文)》 2017年 第11卷 第3期   页码 286-298 doi: 10.1007/s11708-017-0477-3

摘要: To significantly reduce the cost of proton exchange membrane fuel cells, platinum-group metal (PGM)-free cathode catalysts are highly desirable. Current M-N-C (M: Fe, Co or Mn) catalysts are considered the most promising due to their encouraging performance. The challenge thus has been their stability under acidic conditions, which has hindered their use for any practical applications. In this review, based on the author’s research experience in the field for more than 10 years, current challenges and possible solutions to overcome these problems were discussed. The current Edisonian approach (i.e., trial and error) to developing PGM-free catalysts has been ineffective in achieving revolutionary breakthroughs. Novel synthesis techniques based on a more methodological approach will enable atomic control and allow us to achieve optimal electronic and geometric structures for active sites uniformly dispersed within the 3D architectures. Structural and chemical controlled precursors such as metal-organic frameworks are highly desirable for making catalysts with an increased density of active sites and strengthening local bonding structures among N, C and metals. Advanced electrochemical and physical characterization, such as electron microscopy and X-ray absorption spectroscopy should be combined with first principle density functional theory (DFT) calculations to fully elucidate the active site structures.

关键词: oxygen reduction     fuel cells     cathode     nonprecious metal catalysts     carbon nanocomposites    

Effects of bicarbonate and cathode potential on hydrogen production in a biocathode electrolysis cell

Dawei LIANG,Yanyan LIU,Sikan PENG,Fei LAN,Shanfu LU,Yan XIANG

《环境科学与工程前沿(英文)》 2014年 第8卷 第4期   页码 624-630 doi: 10.1007/s11783-013-0584-2

摘要: A biocathode with microbial catalyst in place of a noble metal was successfully developed for hydrogen evolution in a microbial electrolysis cell (MEC). The strategy for fast biocathode cultivation was demonstrated. An exoelectrogenic reaction was initially extended with an H -full atmosphere to enrich H -utilizing bacteria in a MEC bioanode. This bioanode was then inversely polarized with an applied voltage in a half-cell to enrich the hydrogen-evolving biocathode. The electrocatalytic hydrogen evolution reaction (HER) kinetics of the biocathode MEC could be enhanced by increasing the bicarbonate buffer concentration from 0.05 mol·L to 0.5 mol·L and/or by decreasing the cathode potential from -0.9 V to -1.3 V vs. a saturated calomel electrode (SCE). Within the tested potential region in this study, the HER rate of the biocathode MEC was primarily influenced by the microbial catalytic capability. In addition, increasing bicarbonate concentration enhances the electric migration rate of proton carriers. As a consequence, more mass H can be released to accelerate the biocathode-catalyzed HER rate. A hydrogen production rate of 8.44 m ·m ·d with a current density of 951.6 A·m was obtained using the biocathode MEC under a cathode potential of -1.3 V vs. SCE and 0.4 mol·L bicarbonate. This study provided information on the optimization of hydrogen production in biocathode MEC and expanded the practical applications thereof.

关键词: microbial electrolysis cell (MEC)     biocathode     hydrogen production     bicarbonate     cathode potential    

Effect of current density on groundwater arsenite removal performance using air cathode electrocoagulation

《环境科学与工程前沿(英文)》 2021年 第15卷 第6期 doi: 10.1007/s11783-021-1399-1

摘要:

• With the same charge, current density had little effect on As(III) removal in ACEC.

关键词: Electrocoagulation     Air cathode     Arsenic     Current density     Energy consumption    

Heterometallic cluster-based organic frameworks as highly active electrocatalysts for oxygen reduction

《化学科学与工程前沿(英文)》 2023年 第17卷 第5期   页码 570-580 doi: 10.1007/s11705-022-2247-y

摘要: Recently, metal–organic frameworks are one of the potential catalytic materials for electrocatalytic applications. The oxygen reduction reaction and oxygen evolution reaction catalytic activities of heterometallic cluster-based organic frameworks are investigated using density functional theory. Firstly, the catalytic activities of heterometallic clusters are investigated. Among all heterometallic clusters, Fe2Mn–Mn has a minimum overpotential of 0.35 V for oxygen reduction reaction, and Fe2Co–Co possesses the smallest overpotential of 0.32 V for oxygen evolution reaction, respectively 100 and 50 mV lower than those of Pt(111) and RuO2(110) catalysts. The analysis of the potential gap of Fe2M clusters indicates that Fe2Mn, Fe2Co, and Fe2Ni clusters possess good bifunctional catalytic activity. Additionally, the catalytic activity of Fe2Mn and Fe2Co connected through 3,3′,5,5′-azobenzenetetracarboxylate linker to form Fe2M–PCN–Fe2M is explored. Compared with Fe2Mn–PCN–Fe2Mn, Fe2Co–PCN–Fe2Co, and isolated Fe2M clusters, the mixed-metal Fe2Co–PCN–Fe2Mn possesses excellent bifunctional catalytic activity, and the values of potential gap on the Mn and Co sites of Fe2Co–PCN–Fe2Mn are 0.69 and 0.70 V, respectively. Furthermore, the analysis of the electron structure indicates that constructing a mixed-metal cluster can efficiently enhance the electronic properties of the catalyst. In conclusion, the mixed-metal cluster strategy provides a new approach to further design and synthesize high-efficiency bifunctional electrocatalysts.

关键词: bimetallic metal–organic frameworks     bifunctional electrocatalyst     density functional theory     oxygen reduction reaction     oxygen evolution reaction    

Block copolymers as efficient cathode interlayer materials for organic solar cells

Dingqin Hu, Jiehao Fu, Shanshan Chen, Jun Li, Qianguang Yang, Jie Gao, Hua Tang, Zhipeng Kan, Tainan Duan, Shirong Lu, Kuan Sun, Zeyun Xiao

《化学科学与工程前沿(英文)》 2021年 第15卷 第3期   页码 571-578 doi: 10.1007/s11705-020-2010-1

摘要: Emerging needs for the large-scale industrialization of organic solar cells require high performance cathode interlayers to facilitate the charge extraction from organic semiconductors. In addition to improving the efficiency, stability and processability issues are major challenges. Herein, we design block copolymers with well controlled chemical composition and molecular weight for cathode interlayer applications. The block copolymer coated cathodes display high optical transmittance and low work function. Conductivity studies reveal that the block copolymer thin film has abundant conductive channels and excellent longitudinal electron conductivity due to the interpenetrating networks formed by the polymer blocks. Applications of the cathode interlayers in organic solar cells provide higher power conversion efficiency and better stability compared to the most widely-applied ZnO counterparts. Furthermore, no post-treatment is needed which enables excellent processability of the block copolymer based cathode interlayer.

关键词: organic solar cell     block copolymer     cathode interlayer    

Alumina modified sodium vanadate cathode for aqueous zinc-ion batteries

《能源前沿(英文)》   页码 775-781 doi: 10.1007/s11708-023-0902-8

摘要: Aqueous zinc-ion batteries (ZIBs) have great prospects for widespread application in massive scale energy storage. By virtue of the multivalent state, open frame structure and high theoretical specific capacity, vanadium (V)-based compounds are a kind of the most developmental potential cathode materials for ZIBs. However, the slow kinetics caused by low conductivity and the capacity degradation caused by material dissolution still need to be addressed for large-scale applications. Therefore, sodium vanadate Na2V6O16·3H2O (NVO) was chosen as a model material, and was modified with alumina coating through simple mixing and stirring methods. After Al2O3 coating modification, the rate capability and long-cycle stability of Zn//NVO@Al2O3 battery have been significantly improved. The discharge specific capacity of NVO@Al2O3 reach up to 228 mAh/g (at 4 A/g), with a capacity reservation rate of approximately 68% after 1000 cycles, and the Coulombic efficiency (CE) is close to 100%. As a comparison, the capacity reservation rate of Zn//NVO battery is only 27.7%. Its superior electrochemical performance is mainly attributed to the Al2O3 coating layer, which can increase zinc-ion conductivity of the material surface, and to some extent inhibit the dissolution of NVO, making the structure stable and improving the cyclic stability of the material. This paper offers new prospects for the development of cathode coating materials for ZIBs.

关键词: cathodes     aqueous zinc-ion batteries     sodium vanadate     alumina     coating    

标题 作者 时间 类型 操作

Recent advances in cathode electrocatalysts for PEM fuel cells

Junliang ZHANG

期刊论文

Ionic liquid modified Pt/C electrocatalysts for cathode application in proton exchange membrane fuel

Huixin Zhang, Jinying Liang, Bangwang Xia, Yang Li, Shangfeng Du

期刊论文

An overview and recent advances in electrocatalysts for direct seawater splitting

期刊论文

Mapping the trends and prospects of battery cathode materials based on patent landscape

期刊论文

Fabrication of layered structure VS anchor in 3D graphene aerogels as a new cathode material for lithium

期刊论文

A review of Pt-based electrocatalysts for oxygen reduction reaction

Changlin ZHANG, Xiaochen SHEN, Yanbo PAN, Zhenmeng PENG

期刊论文

Structural engineering of transition metal-based nanostructured electrocatalysts for efficient water

Yueqing Wang, Jintao Zhang

期刊论文

Facile route to achieve MoSe-NiSe on nickel foam as efficient dual functional electrocatalysts for overall

期刊论文

Oxygen-deficient MoO/NiS heterostructure grown on nickel foam as efficient and durable self-supported electrocatalysts

期刊论文

Current challenge and perspective of PGM-free cathode catalysts for PEM fuel cells

Gang WU

期刊论文

Effects of bicarbonate and cathode potential on hydrogen production in a biocathode electrolysis cell

Dawei LIANG,Yanyan LIU,Sikan PENG,Fei LAN,Shanfu LU,Yan XIANG

期刊论文

Effect of current density on groundwater arsenite removal performance using air cathode electrocoagulation

期刊论文

Heterometallic cluster-based organic frameworks as highly active electrocatalysts for oxygen reduction

期刊论文

Block copolymers as efficient cathode interlayer materials for organic solar cells

Dingqin Hu, Jiehao Fu, Shanshan Chen, Jun Li, Qianguang Yang, Jie Gao, Hua Tang, Zhipeng Kan, Tainan Duan, Shirong Lu, Kuan Sun, Zeyun Xiao

期刊论文

Alumina modified sodium vanadate cathode for aqueous zinc-ion batteries

期刊论文